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ABSTRACT 
Motivation:  This work explores automatic annotation of 
fMRI studies based on standard terms from the Cognitive 
Paradigm Ontology (CogPO).  We have implemented an 
initial text mining approach on a subset of texts of abstracts 
from the BrainMap database (www.brainmap.org), to auto-
mate the expert annotations from the BrainMap schema and 
CogPO terms.  We measured the performance of a basic K-
nearest-neighbor (KNN) approach on the title and abstract 
text of the corpus, in predicting the correct annotations.  The 
results are better than chance, which is promising given the 
high-dimensional nature of the problem.  We also experiment 
with n-gram models. Our work points toward the use of se-
mantic models more complex than simple distance among 
abstracts. 

1 INTRODUCTION  
One of the largest databases of neuroimaging results in hu-
mans is the BrainMap database (www.brainmap.org).  Since 
the early 1990s, its curators have been manually extracting 
descriptions of first PET and then fMRI experiments, and 
storing each paper’s results in a standardized system for 
ease of retrieval (Fox et al 2005, Laird et al 2005).  The 
BrainMap software suite provides multiple applications that 
interface with the database to submit papers for entry, 
search, retrieve, and filter studies, and to perform quantita-
tive meta-analysis.  This system has facilitated reviews and 
meta-analyses of the literature through identifying con-
sistent subsets of experiments (Laird et al. 2005). The abil-
ity to perform meta-analyses to identify replicated results is 
part of the toolset needed to explore the different cognitive 
constructs underlying brain function in various disorders, 
such as the constellation of schizophrenia, bipolar disorder, 
depression, and autism. 

The ability to run large-scale meta-analyses demands the 
ability to easily identify studies using the same (or similar 
enough) experimental methods and subjects.  The BrainMap 
method for describing experiments has evolved into a tax-
onomy composed chiefly of structured keywords that cate-
gorize the experimental question addressed, the imaging 
methods used, the behavioral conditions during which imag-
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ing was acquired, and the statistical contrasts performed. 
The schema that BrainMap uses to describe experiments has 
been used to form the backbone of the Cognitive Paradigm 
Ontology.  That ontology (Turner & Laird 2012) uses the 
keywords from BrainMap and explicitly represents the im-
plicit definitions and relationships among them.  The driv-
ing force behind CogPO’s design is to allow published ex-
periments implementing similar behavioral task characteris-
tics to be linked, despite the use of alternate vocabularies. 
CogPO has been submitted to the National Center for Bio-
medical Ontologies (NCBO) Bioportal, and is available for 
use in semantic annotation and reasoning.   

While the value of the BrainMap project has been proven, 
the number of publications in the literature far outweighs the 
number of publications that have been included in the data-
base.  The human step of reading the paper and determining 
its annotations is currently a bottleneck.  In this project, we 
aim to find a method for replacing the human step with au-
tomated suggestions for the experimental paradigm terms.  

2 BACKGROUND 
A variety of methods have already been developed for au-
tomated annotations of free text within the biomedical re-
search community.   The NCBO Annotator, for example, 
will take free text and use efficient concept-recognition 
techniques to suggest annotations from the BioPortal reposi-
tory of ontologies (Shah et al 2009).  The Neuroscience In-
formation Framework (Gardner et al 2008) uses ontological 
annotations of a broad variety of neuroscience resources to 
retrieve information for user queries.  Neither of these, how-
ever, have broadly attempted to recreate a human expert’s 
annotations on a curated dataset in their application of onto-
logical terms. 

The CogPO ontology considers experiments to have ex-
perimental conditions; experimental conditions are combi-
nations of stimulus, response, and instructions (Turner & 
Laird, 2012).  Each of these classes has a fixed number of 
terms, and the papers in the BrainMap database have all 
been annotated based on the experimental conditions in the 
experiments, and the stimulus types, response types, and 
instructions used in each case. This provides a gold standard 
for developing an annotation algorithm. 
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3 METHODS 
We experiment with two categories of methods: methods 
emphasizing presence of high-entropy words, and methods 
emphasizing the sequence in which the words occur. High-
entropy words are those, which add more discriminating 
information. These are likely to be technical terms relevant 
to the domain. In the second category, we examine the se-
quence in which certain words tend to occur in the corpus, 
rather than the words themselves. Both methods are de-
scribed below. 

3.1 Experimental Setup 1. 
Our corpus of documents contained 327 published papers 
from the BainMap Database. Each paper had an associated 
stimulant, response to stimulant, and instructions, all of 
which were annotated. Papers were restricted to the subfield 
of fMRI attention studies. The full text of the abstract and 
title were then downloaded from PubMed using EUtils, for 
the citations, which had them.  This resulted in a final cor-
pus of 327 abstracts and titles, each of which had a mini-
mum of one and a maximum of four annotations per Stimu-
lus, Response, and Instruction.  There were twenty-seven 
different stimulus terms used in these annotations. 

The next step was to create a dictionary that would repre-
sent all the words in the corpus of papers. We wanted to 
keep the most discriminative words in the dictionary, but at 
the same time keep the dictionary representative of the 
words in the corpus. To ensure this, we removed all stop 
words from the dictionary. For example, words like because, 
this, is, was, when, etc. were removed since they are not 
very discriminative. We used a standard English stop word 
list (http://www.ranks.nl/resources/stopwords.html). We 
also wanted make sure that all the words in the dictionary 
were either legitimate English-language words, or were part 
of standard medical terminology and specifically, neurosci-
ence terminology. We used a list of words from a standard 
English dictionary, and a list of words from a medical dic-
tionary. We constructed our dictionary from the set of all 
words contained in the corpus of paper abstracts, that were 
not a part of the list of stop words, and were part of the 
standard and medical dictionaries. 

To ensure that we did not have redundancies in the dic-
tionary with many forms of the same roots, our next step 
was to stem all the words in the dictionary and the corpus. 
In linguistic morphology and information retrieval, stem-
ming is the process for reducing inflected or sometimes, 
derived words to their stem, base or root form, generally a 
written word form. The stem need not be identical to the 
morphological root of the word, it is usually sufficient that 
related words map to the same stem, even if this stem is not 
in itself a valid root. The Porter stemming algorithm (or 
'Porter stemmer') is a process for removing the commoner 
morphological and in flexional endings from words in Eng-

lish. Its main use is as part of a term normalization process 
that is usually done when setting up Information Retrieval 
systems. (Porter 1980) We used the porter stemmer to re-
duce both the dictionary and the corpus to the root stems of 
existing words, thereby reducing redundancy. 

Now we had a dictionary with 2,241 words in it. We then 
converted each abstract in the corpus to a 2,241 element 
vector, in which each element represents the count of the 
number of words from the dictionary that are present in the 
abstract. Thus our entire corpus is new represent by 327 
vectors of 2,241 elements each. We can now visualize each 
abstract as a point in a 2,241-dimensional space. We consid-
er the Euclidean distance between the point-abstracts as a 
proxy for the similarity between the contents of the abstract. 
Our hypothesis is that abstracts that are tightly bunched to-
gether in this space will be similar in content, and hence 
more likely to be annotated with the same terms. 

Table 1: Some statistical metrics on the space of point-abstracts. The stim-
ulus types above the double lines appear in the annotations more than 15 
times, while those below appear less than 15 times. Other stimulus types 
appear very few times, and have not been included here. 

 
We used the K-nearest neighbor to determine annotations 

for each point-abstract in relation to its proximity to other 
point-abstracts. K-nearest neighbor is a good fit for our 
problem since it is a non-parametric lazy learning algorithm. 
It does not make any assumptions on the underlying data 
distribution, and in our problem we do not know the distri-
bution of the point-abstracts in advance. Since it is a lazy 
learning algorithm, we do not need an explicit training 
phase. (Duda & Hart, 2001) 

We split our data set of point-abstracts in to a training and 
generalization set in a 1:2 ratio, i.e., there were 109 points 
abstracts in the training set, and 218 point-abstracts in the 
generalization set. This split was done at random; for com-
parison, we also performed a leave-one-out analysis. The 
point-abstracts in the training set were annotated with the 
stimulus types associated with that corresponding paper.   

 

 

Stimulus Type Mean Pairwise Distance Standard Deviation 

All 9.2491 1.1856 
Words 8.2597 1.9254 
Shapes 8.8745 1.7743 
Pictures 11.1896 2.0172 
Letters 9.3124 1.3449 
Digits 9.0212 1.7234 
Faces 10.0132 2.1134 
Fixation 9.7427 1.9847 
Symbols 9.5926 2.0031 
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Table 2: Pairwise distance between the centroids of the 5-most common 
clusters. 

 Words Shapes Pictures Letters Digits 

Words 0 12.35 13.64 7.42 8.93 

Shapes 12.35 0 13.41 12.94 13.05 

Pictures 13.64 13.41 0 14.17 14.28 

Letters 7.42 12.94 14.17 0 13.91 

Digits 8.93 13.05 14.28 13.91 0 

 
We then apply the K-nearest neighbor algorithm to the en-

tire space of point-abstracts to automatically annotate the 
point-abstracts in the generalization set. A point-abstract in 
the generalization set is annotated with the stimulus type as 
determined by the weighted proximity of its K-nearest 
neighbors in the space. 

Table 3: Results of K-nearest neighbor algorithm for automatic annotation 
of point-abstracts using 2-fold cross-validation. 

 

 
 

 
 
 
We repeated this experiment for K = 1, K = 5, K = 10, K= 
20, K = 50, and K = 100. For each value of K, the experi-
ment was run 10,000 times, each time a new training and 
generalization set was selected at random. The results of the 
generalization were compared with actual annotations, and 
were averaged over the 10,000 runs.                                                        

3.2 Results 
As we can see from Tables 1 and 2, a simple statistical 
check does not indicate any clearly discernible difference in 
within-cluster distances across stimulus types, or any ex-
tremes of distance between individual clusters in the point-
abstract space. The stimulus types words, shapes, pictures, 
letters, and digits are the most occurring annotations in the 
abstract corpus, each occurring more than 15 times. Other 
annotations like faces, fixation, and symbols occur fewer 
than 15 times. The remaining annotations occur only spar-
ingly in the abstract corpus, fewer than 5 times. 

The accuracy of the K-nearest neighbor algorithm is 
shown in Tables 3 and 4. For K = 1, the point-abstract in the 
generalization set is just annotated with the same stimulus 
type of the point-abstract closest to it. For K = 5, the point-
abstract in the generalization set is annotated with the most 
common stimulus type among the five nearest neighbors 

from the training set. This is repeated for values K = 10, K = 
20, K = 50, and K = 100. We can observe a very similar 
trend for the leave-one-out cross validation results in Table 
4. 

Table 4: Results of K-nearest neighbor algorithm for automatic annotation 
of point-abstracts using leave-one-out cross-validation. 

 

 
 
 
 

 
 
We can discern some obvious trends from the results. The 

results are better than random guessing. Since most of the 
abstracts in the corpus are annotated with one of the five 
stimulus types mentioned in Table 1, a random guess would 
yield around 20% accuracy. In our experiments, we were 
getting accuracies far above that even in the worst cases. As 
the value of K increases from K = 1 to K = 10, so does the 
accuracy. This is because as we increase the number of 
neighbors influencing the point-abstract in the training set, 
the weighting can take in to consideration more information 
about similar point-abstracts, which are likely to be in close 
proximity. However as the number of neighbors increases 
further, for values K = 20 to K = 100, the accuracy decreas-
es. This is because as the size of the neighborhood ap-
proaches the size of the entire training set (K = 109), local 
information regarding proximity is lost and this decreases 
the effect of the weighting of the nearest neighbors. 

3.3 Experimental Setup 2. 
In this experiment, we consider sequences of words, rather 
than the words themselves. In this model, the probability of 
a sequence of words occurring is modeled using a unigram 
(Luger 2008). Consider a sequence of words w0, w1, w2, …. 
wn. We can assume that these words occur independent of 
each other. Hence, we can model the joint probability of the 
sequence of words as. 
 

P(w1, w2, …. wn) = P(w1)P(w2|w1)P(w3|w2)….P(wn|wn-1) 
 

Thus, we can now encode every abstract as a n by n ma-
trix, where each cell (i,j) of the matrix, represents P(wi|wj). 
We restrict our analysis to unigrams due to computational 
expense. We can now compare the probability distribution 
matrices of each encoded abstract using KL-divergence 
(Luger 2008). 

 
 

Value of K Annotation Accuracy 

1 29.67% 
5 43.61% 
10 52.94% 
20 53.11% 
50 47.22% 
100 30.06% 

Value of K Annotation Accuracy 

1 26.33% 
5 41.92% 
10 51.69% 
20 49.73% 
50 48.39% 
100 27.34% 
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3.4 Results 
However, we get very poor results form this technique. The 
probabilities were uniformly very close to zero, leading to 
unusable KL-divergence measures. Unigram models typi-
cally are used to represent spoken language models. Since 
abstracts, by practice, are written in a succinct fashion, uni-
grams do not model them well. 

4 DISCUSSION 
We have explored some basic approaches to automated 

annotation techniques, using a gold-standard corpus of neu-
roimaging abstracts. We find that the initial KNN models 
are promising, but n-gram models will require either a much 
larger corpus or more of the text than just the abstract.  

One challenge was the curse of dimensionality. We were 
essentially working in a 2,241 dimensional space with just 
327 data points. A larger set of data points could alleviate 
this problem. But a better solution is to reduce the dimen-
sionality of the space itself. Our technique of reducing ab-
stracts to word vectors, which had the same cardinality of 
the dictionary, only took in to account the number of occur-
rences of key discriminative words n the abstracts. The next 
step is to take in to account more sophisticated characteris-
tics of the abstracts. Our future work will representing the 
abstracts using textual and language models that leverage 
the semantic artifacts of the contents of the abstracts 
(Trieschnigg et al. 1999). This will take in to account richer 
linguistic features like acronyms, synonyms, etc., and also 
semantic features like concepts expressed. 

In most real world annotation problems including this 
one, most entities have several annotations—a paper can 
describe several experiments, each with several conditions 
and multiple stimulus types, for example. The number of 
annotations the algorithm got right, or the percentage of 
annotations it accurate predicted for each entity considered 
separately, could provide very different performance met-
rics. Ideas from folksonomy research community, who se-
mantically mine pictures using tags for information, may be 
relevant in this case. 

We expect that even if automated annotation techniques 
cannot completely replace human annotators, they may be 
designed to work in complement with human annotators. 
We can envision such techniques being able to guide human 
annotators in the right direction by capturing high level se-
mantics of the corpus, and identifying a high-probability 
subset of terms; in the BrainMap case, this would provide 
an initial filtering and partial annotation of the papers, 
speeding up the process of entry.  
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